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Abstract The rates of formation and concentration distributions of a dimer reaction
showing hysteresis behavior are examined in an ab initio chemical reaction designed
as elementary and where the hysteresis structure precludes the formation of transition
states (TS) with pre-equilibrium and internal sub-reactions. It was discovered that the
the reactivity coefficients, defined as a measure of departure from the zero density rate
constant for the forward and backward steps had a ratio that was equal to the activity
coefficient ratio for the product and reactant species. This surprising result, never for-
mally incorporated in elementary rate expressions over approximately one and a half
centuries of quantitative chemical kinetics measurement and calculation is accepted
axiomatically and leads to an outline of a theory for the form of the rate constant, in
any one given substrate—here the vacuum state. A major deduction is that the long-
standing definition of the rate constant for elementary reactions is not complete and
is nonlinear, where previous works almost always implicitly refer to the zero density
limit for strictly irreducible elementary reactions without any attending concatenation
of side-reactions. This is shown directly from MD simulation, where for specially
designed elementary reactions without any transition states, density dependence of
reactants and products always feature, in contrast to current practice of writing rate
equations. It is argued that the rate constant expression without reactant and product
dependence is due to historical conventions used for strictly elementary reactions.
From the above observations, a theory is developed with the aid of some proven ele-
mentary theorems in thermodynamics, and expressions under different state conditions
are derived whereby a feasible experimental and computational method for determin-
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ing the activity coefficients from the rate constants may be obtained under various
approximations and conditions. Elementary relations for subspecies equilibria and its
relation to the bulk activity coefficient are discussed. From one choice of reaction
conditions, estimates of activity coefficients are given which are in at least semi-
quantitative agreement with the data for non-reacting Lennard-Jones (LJ) particles for
the atomic component. The theory developed is applied to ionic reactions where the
standard Brönsted-Bjerrum rate equation and exceptions to this are rationalized.

Keywords Elementary reaction rate constant · Activity and reactivity coefficients ·
Elementary and ionic reactions without pre-equilibrium

1 Introduction

Previous work has detailed a hysteresis model of a simple dimer reaction [1–3] where
the coordinates for molecular formation rf and breakdown rb are not at the same
vicinity, as shown in Fig. 1. If both these points coincided, then one could in principle
define a volume region about the point rf = rb that would serve as the transition state
pre-equilibrium T S, suggesting a composite reaction such as

2A � T S → A2 (1)

which is therefore not strictly elementary since (1) is a summation of elementary
steps to yield a net reaction. The current model precludes such a possibility, implying
a strictly elementary reaction process. Previous models, especially that of Eyring
postulated the pre-equilibrium TS which was also interpreted experimentally [4]
but the most recent developments in some cases by-passes this [5,6]. In the theory
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that follows, the T S refers to the point in state space whose neighborhood always
includes product and reactant states. The method for treating changes of potential via
switch mechanisms were also outlined [1–3], together with an algorithm which was
implemented to conserve energy and momentum at high energy regions with steep
potential gradients. This work focuses primarily on the form of the elementary rate
constants for the reaction, and presents a way of determining activity and reactivity
coefficients; the two concepts are different, and will be defined in this work, where
under certain conditions, the activity coefficients might be determined. These two
types of coefficients are discriminated by first introducing an ansatz of the depen-
dency of the reactivity coefficients on the rate constants and comparing the results
with the actual kinetics of the simulation, where it was discovered that there were
variations of the rate constant with concentration. Section 3 and its subsections give
details of the methods used to determine the extent of variation. The ratio of the reac-
tivity coefficient �k agreed numerically with the results from the activity factor �e,
which is determined independently by extrapolation of the variation of the concentra-
tion equilibrium ratio determined directly from simulation. This observation is used
to develop a theory for the form elementary reaction rate constants take, which does
not accord with standard assumptions used at the current time. The above objectives
are realized by first describing the model of the elementary reaction in Sect. 2. The
empirical result of the equivalence of the reactivity and activity coefficient ratios is
developed in Sect. 3 and the subsections where the consequences are discussed in
depth. The uniqueness of the activity coefficient and various other associated results
appear in Sect. 3.3. Verification of the theories concerning the role of activity coef-
ficients in elementary reactions is given in reference to results from the literature
for non-reacting LJ particles, where it is argued that the residual Helmholtz energy
Ares is a better measure for computing the activity coefficient for multi-component
system than the residual free energy Gres (Sects. 3.4.1–3.6.3). In either case, the activ-
ity coefficient for the unreacted particle increases with system concentration and is
positive. Of two possibilities for the estimate of the activity coefficient derived from
energy considerations of the dimer and single particle trajectory along the reaction
coordinate, only one accords with observation derived from simulation data from
the literature for the activity coefficient of the atom, with semi-quantitative agree-
ment. From the form of the activity/availability coefficients, rudimentary mechanisms
involving single and double stages (Sects. 3.6.1–3.6.3) are proposed for elementary
reactions. It is suggested that the 2-stage mechanisms are the more appropriate, and
an interpretation of the Brönsted-Bjerrum (BB) rate equation is made on the basis of
the two-stage model (Sects. 3.6.4–3.6.5), where the original form of the BB equa-
tions actually refer to the absolute one-stage model described here, and which is of
limited applicability. Thus a harmonization with the two stage model involving an
intermediate state of the reactant activity coefficient is provided which is NOT of the
same form as in transition state theory where the activity coefficient of the transi-
tion state species features in the denominator of the rate equation involving reactant
activity coefficients. Although references from the current literature has been used
to define normative expressions, it might be mentioned in passing that very recently,
a review has been made of kinetic expressions [7] where activity coefficients have
been used to describe the form that kinetic expressions might take close to equi-
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librium if the overall rate is expressed as the difference of two terms. Denbigh is
viewed in Ref. [7] as the most lucid writer in this subject [8, chap. 15], and Boyd
[9, Introduction, p. 93] has considered his work foundational and elegant, even if
confined to a few pages in the last chapter of his book. There, for a perfect gas reac-
tion

aA + bB = cC (2)

the equilibrium constant Kc is given by

[C]c
[A]a[B]b = Kc (3)

and if the forward rate is postulated as having form

d[C]
dt

= k[A]α[B]β [C]γ , (4)

for small quantities of substance C, then the backward form rate could be written
k′[A]α′ [B]β ′ [C]γ ′

and the proposed complete expression for the rate becomes

d[C]
dt

= k[A]α[B]β [C]γ − k′[A]α′ [B]β ′ [C]γ ′
(5)

Then it was inferred that a general expression must hold of the form

(α′ − α)

−a
= (β ′ − β)

−b
= (γ ′ − γ )

c
= n (6)

where k/k′ = Kn
c and where n can have any positive, non-integer value. If α, β and

γ have been determined experimentally, then the backward exponents α′, β ′ and γ ′
can be determined from (6); clearly for a fixed rate constant for the forward rate, k′
can be made to vary with n. If (2) refers to non-deal gases, then the overall rate can
be expressed as

d[C]
dt

= k[A]αyα
A[B]βy

β
B − k′[C]γ ′

y
γ ′
C (7)

where the y’s represent activity coefficients. Then the same results as for the perfect
gas case is supposed to obtain for the backward ratios, with k/k′ = Kn. But this
thermodynamical deduction failed experimental tests, and consistency was obtained
only if a factor β was multiplied to give

d[C]
dt

= βk[A]αyα
A[B]βy

β
B − βk′[C]γ ′

y
γ ′
C (8)

where β depends on the concentration, and a “well-known physical interpretation of β,
due to Brönsted, is that it is the reciprocal of the activity coefficient of an intermediate
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complex. This point will be referred to again in connexion with the transition state
theory.” In fact, we show that the actual β term is connected to non-transition state
considerations involving perturbation of the upper state of the transition pathway not
referring to the activated complex. The activity coefficients are interpreted within a
Hamiltonian context. It is absolutely extraordinary that the world’s current research
literature on kinetics does not utilize nor refer to these forms, and neither do all the
major textbooks, whereas they are discussed in a somewhat nonchalant manner in
Ref. [7]. The references provided here should provide a contrast between present day
concepts and these other descriptions that do not belong to the mainstream of kinetic
description and definition. According to Boyd [9, p. 95, sect. 3], this β term, (equal for
both forward and backwards reaction) is consistent with it being “the reciprocal of the
activity coefficient of the activated complex” according to the Eyring model; we show
that this is a gross simplification for elementary reactions at least. Finally, the current
work pertains to elementary reactions without “microscopic reversibility” structure;
one would not expect the relations derived experimentally here to obtain to complex
reactions (contrary to Ref. [9, p. 96, sect. 4]) because of the interplay of several
interacting potential fields that might not be separable into simple product terms.
Furthermore, in simulations, one could easily characterize the “backward reaction”
by designing a molecule that decomposes in an elementary step only if it reacts with the
other species in a prescribed way by introducing selective interactions independently of
the forward reaction; this would have the effect of modifying the exponents arbitrarily
in (7), so that no such fixed rate expression can be predicted, as alleged in the equation,
thus also making vacuous allegations concerning the equality of the β factors. It is
thus immediately inferred that the method presented is not a theory that can explain
the empirical observations determined experimentally here without any conjecture;
some other microscopic principle seems to be required. Further, it is opined that the
“backward” reaction or forward reaction can only exist as an inference [7–9], where
the following is written [7, p. 4]:

Another question concerns the circumstances under which the reaction rate may
be expressed as the difference between two terms. This is very important because
of frequent identification of the two terms with the forward and reverse rates,
which balance at equilibrium. There is no specific thermodynamic reason why
the observed rate should be expressed as the difference of two terms [22]. The
only observable is the net rate and the forward and backward rates have meaning
only by interpretation.

The simulation here is able to distinguish both the forward and reverse rate. Concerning
measurements, the overwhelming characterization of molecules or reactions [6,10]
involve limits or boundaries of intermolecular potentials where product and reactants
are demarcated, and these potentials are position dependent. Even with the inclusion
of the Heisenberg Uncertainty Principle in the analysis, the measurement of positional
coordinates at any time t can be carried out to arbitrary precision; the sacrifice of the
precision of the conjugate momentum measurement is not relevant because of the
positional dependent potentials which determine the characterization of product and
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reactant; thus in principle, all formation and breakup of bonds can be measured via
positional coordinates, and so if this characterization is used to classify molecules,
both directions of the reactions have physical meaning and thermodynamics cannot
place any restriction of what type of intermolecular potentials can or cannot be used to
classify or model a system. Indeed, thermodynamics cannot place any restriction on
the nature of the intermolecular potentials, save perhaps for the energy conservation
principle and the conservation principles of mechanics (and quantum mechanics). The
conclusion (Sect. 4) brings into focus all the details of the preceding sections of this
work.

2 The model

The simulation model is a dimeric particle reaction

2A � A2 (9)

at the Lennard-Jones (LJ) supercritical regime (T ∗ = 8.0, 0.03 < ρ < 1.1) in a range
of equilibrium fluid states. Details of the mechanism have already been described and
will not be repeated here [11]. In the current study, the potentials given in Fig. 1 are
used. In this model, 2 free atoms “react” at rf where a switch mechanism converts the
potential to the harmonic intermolecular potential. The molecule “breaks” at rb where
the potential reverts to the LJ type. At these points, a specialized algorithm was used to
conserve energy and momentum and this too has been described in detail [3,11]. The
free atoms A interact with all other particles (whether A or A2) via a Lennard-Jones
spline potential and this type of potential has been described in much detail [12]. An
atom at a distance r to another particle possesses a mutual potential energy uLJ where

uLJ = 4ε

[(σ

r

)12 −
(σ

r

)6
]

for r ≤ rs (10)

uLJ = aij (r − rc)
2 + bij (r − rc)

3 for rs ≤ r ≤ rc

uLJ = 0 for r > rc

and where rs = (26/7)
1
6 σ [12]. At rf , the potential is switched to the molecular

potential given by

u(r) = uvib(r)s(r) + uLJ [1 − s(r)] (11)

where uvib(r) is the vibrational potential given by Eq. 13 below and the switching
function s(r) has the form given by Eq. 12.

s(r) = 1

1 +
(

r
rsw

)n (12)
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where

{
s(r) → 1 if r < rsw
s(r) → 0 for r > rsw

.

The switching function becomes effective when the distance between the atoms
approach the value rsw (see Fig. 1). The intramolecular vibrational potential uvib(r)

for a molecule is given by

uvib(r) = u0 + 1

2
k(r − r0)

2. (13)

LJ reduced units are used throughout this work unless stated otherwise. The details of
the parameters have been given elsewhere [11] but they include the following:
u0 = −10, r0 = 1.0, k ∼ 2446 (exact value is determined by the other input parame-
ters), n = 100, rf = 0.85, rb = 1.20, and rsw = 1.11.

3 Thermodynamic results from equilibrium mixtures

Details of the runs have been described elsewhere [11]. Typical runs of 10 million
(10M) time steps were performed at each general system particle density ρ (where
ρ refers to the particle which is either free or part of a molecule), where the first
200,000 steps were discarded so that proper equilibration could be achieved for our
data samples. The sampling methods have been previously described [12] where sam-
pling of all data variables were done each 20th time step and where the data were
averaged and written into a dump file of 100 dumps for the 10M million time steps.
The averaged values in each dump were further averaged to yield the final averages
and standard errors. Dynamical quantities however had to be sampled at each time step
δt∗ = 0.00005. In view of the abnormally high temperatures—not hitherto encoun-
tered in almost all simulation studies—this time step value was found to be not too
small. The system was thermostatted at the ends of the MD cell only, but very similar
unpublished results with less variable fluctuation was obtained by thermostatting each
layer with strict conservation of momentum during the thermostatting process [13]
which involves solving coupled equations for each thermostatted layer. But it was
desired to mimic the actual experimental situation where the reservoirs occurred at
the boundary location of the system. It is surmised that reservoir boundary conditions
could play a pivotal role in determining the product outcomes of reactions sensitive
to energy fluctuations.

3.1 Equilibrium constants

Two independent methods ((i) and (ii)) were used to confirm the thermodynamical
results.
(i) Time independent distribution sampling method
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In order to find the thermodynamic equilibrium constant, Keq , the following procedure
was adopted. The concentration ratio, Kc defined as

Kc = xA2

x2
A

(14)

was determined as a function of average system density, ρ where the x’s represent
number density concentrations of the species indicated by subscript for the reaction
(9). At very small densities, the system becomes an ‘ideal’ mixture, but as illustrated
previously [1], the limit of the potentials cannot be the same as the isolated potentials
used in the MD calculations, since if this were the case, all the molecules would
break up, yielding a net zero value for the equilibrium constant at the limit of zero
density. As another project, it would be of interest to determine the limit at which the
equilibrium regime breaks down in this thermostatted system, but there may well be
technical difficulties involved in computations of very low density systems. The plot
of Kc = Kc(ρ) is shown in Fig. 2.

It will be noted that the errors in the Kc ratio at low densities are of order 20 times
than that at higher densities, where relatively very accurate sampling is possible. What
is observed at very low density is a “saturation” or limit effect for both rates (leading
to fluctuations in Kx in method (ii) and depicted in Fig. 6 and for Kc for this method
(i) given in Fig. 3. This allows us to determine Keq from taking the average value over
a range of low ρ in the saturated range of ρ (here from ρ = 0.03 − 0.09) over about
13 values where theoretically Keq = lim M → ∞∑M

i=1 Kc,i/M over any saturated
range. The resulting constant is

Keq = lim
ρ→0

Kc = 0.061 ± .002LJ units (15)
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where there is empirically complete coincidence within experimental uncertainty

Knowing this value, we calculate the activity coefficient ratio, �e = γA2
γ 2

A
, for the other

densities using

Keq = Kc

γA2

γ 2
A

= Kc�e. (16)

The ratio of activity coefficients �e is shown as a function of density in Fig. 4.
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It is evident from the plots that the mixture is highly non-ideal, which may be expected
due to the large differences in the LJ energy well for the molecule and the atom (see
Fig. 1).

The separate activity coefficients may perhaps be derived from cycle studies of
equilibrium states that include the reference state at infinite dilution. The derivation
might require a series of very elaborate and detailed computations. However, to date
no clear theory nor example has been provided as to how this might be achieved.

(ii) Kinetic sampling method
From the way the algorithm was constructed for molecular formation, the mole-

cularity of the elementary reaction is 2 leading to a single second-order reaction of
formation, and for the dissociation of A2, a first-order reaction results since the mole-
cule can only exchange kinetic energy with all other particles within the system without
further reactions to the dissociation limit. There are many definitions and conventions
for describing the overall rate of reaction and the individual rate constant. Here, the
forward rate constant k0

1 and the dissociation rate constant k0−1 are defined as the value
of the respective rate constants as ρ → 0 where the unsuperscripted k’s refer to the
rate constants for non-zero finite ρ. The overall rate of reaction r may be written in
terms of the experimentally determined forward rate r1 defined as r1 = k1x

2
A and

backward rate r−1 defined as r−1 = k−1xA2 where r = r1 − r−1 = k1x
2
A − k−1xA2 .

In this definition of rate, no normalization by the stoichiometric factors of the chemical
reaction are used. At equilibrium r = 0, and so

xA2

x2
A

= k1

k−1
. (17)

The ratio of rate coefficients is the concentration ratio which is here written as Kx and
is expressed only as a kinetic ratio where

Kx = k1

k−1
. (18)

To verify the above we plot

r1/x
2
A = Q = k1

and

r−1/xA2 = R = k−1 (19)

against the density ρ and extrapolate to zero density to determine the equilibrium
constant. The rates were calculated independently from the program by monitoring
the number of bonds formed or broken for each time step δt∗ and averaging this quantity
over the 10M time steps. The plots of Q and R at low densities (where saturation is
observed) are given in Fig. 5. As with Kc, a saturation effect is observed amidst the
evident fluctuations at very low densities and the zero density (superscripted 0) limit
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for Q and R is defined thus:

Q0 = k0
1 = lim

M → ∞
∑M

i=1 Qi

M

R0 = k0−1 = lim
M → ∞

∑M
i=1 Ri

M
. (20)

The subscripted Q’s and R’s in (20) are the values determined in the saturation region
interval of ρ where 0.03 ≤ ρ ≤ 1.1. In this work M = 13. If the simulation is to be
consistent and at equilibrium, then Kc = Kx = Q/R which is precisely observed in
Fig. 6. The individual variation of R and Q are given in Fig. 7.
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The results for the low density limits are as follows:

lim
ρ→0

Q = k0
1 = 0.870 ± 0.006L.J. units (21)

lim
ρ→0

R = k0−1 = 14.32 ± 0.1L.J. units (22)

and their ratio is

K0
x = lim

ρ→0

k1

k−1
= 0.0610 ± 0.006L.J. units (23)

An excellent agreement with the equilibrium Keq is found, i.e. Keq = K0
x = K0

c ,
where the method used for the determination of the equilibrium constant differs from
the static distributive sampling of method (i).

3.2 Survey of some standard forms for elementary rate constant

An elementary reaction has been defined irreducibly [14, p. 1] as due to the actual
scattering of particles where “..Chemical reactions occur by the collision of mole-
cules, and such an event is called an elementary reaction for specified reactant and
product molecules” where if there are two or more elementary steps involved, as in the
Michaelis-Menten reaction, then a “pseudo-elementary reaction” is implicated [14, p.
3].The rate coefficient [14, p. 7, Chap. 3] is written k(T ), “and is generally a function of
temperature, and frequently of T only.” The onset of perturbations [14, e.g. Chap. 11,
Oscillatory Reactions] are due to species effects not connected to k(T ) where the rate
ν of the elementary reaction is written ν = k(T )[A]α[B]β . . . and the entire field of
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reaction mechanisms does not question this representation. The form was established
over a century and a half ago and follows from the law of mass action [15, Chap. 3]
which was suggested by persons which included C.L. Berthollet (1799), M. Berthelot
and P. St. Gilles (1862–1863), L. Wilhelmy (1850), H. Rose (1842), A.W. Williamson
(1859) and C. Guldberg and P. Waage (1864–1867) where they all in different ways
generally inferred that at equilibrium,

k+R1R2 . . . = k−P1P2 . . . (24)

where the R’s and the P ’s were effectively the mass concentrations of reactants and
products and where the k’s were “coefficients of velocity” which were independent
of concentration. This form has been maintained to the present times no matter how
complex the reactions (e.g. possibly involving multi-step cluster and activated ther-
mal electron transfer [16] or complex chemical oscillations [17]. In the preface of the
text devoted to non-linear chemical kinetics [17], it was surmised “..only first order
processes escape the non-linear net, and even these get caught if there is the slight-
est departure from isothermal operation.” On the other hand, in the dimer reaction
described here, the first order A2 → 2A process is shown to be non-linear in the most
ordinary circumstances. Complex concentration effects on the rate constant have been
structured by postulating the concatenation of several elementary reactions, meaning
that these reactions are pseudo-elementary according to Ref. [14], where each elemen-
tary reaction rate constant is strictly concentration independent in all the references
hitherto encountered, and which therefore can be taken to be a universal definition. In
Eyring’s transition state theory, a scheme

Reactants � Activated Complex → Products (25)

is postulated for the pseudo-elementary reaction (25) above [18, Eq. 4.3, p. 125],
leading to a rate R

R = k′(T )
γ1γ2

γ † . . . C1C2 . . . (26)

where k′(T ) is strictly temperature dependent, and the γ ’s are the activity coeffi-
cients; k′(T ) is derived from a product function involving equilibrium constants, and
strictly elementary rate constants, implying no other variable dependency other than
T . Likewise, pressure dependency of unimolecular and association reactions [19, 1995
edition, pp. 121–142] are explained by Lindemann-type mechanisms involving com-
plex equilibria, which introduces a pressure dependence on the pseudo-rate constant
[19, 1995 edition, p. 138, Sect. 5.11, Association reactions]. Reference [18, Sect.
5.4, p. 186] give examples of composite elementary reactions, such as [18, Eq. 5.90,
p. 191]

A + M
k2�
k−2

A∗ + M, A∗ k1→ A† → P (27)
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where various quantum statistical approximations are applied to each elementary step
involving the individual ki(T ) rate constants to derive the overall rate constant which
is first order at low reactant concentrations and second order at high concentrations.
As stated elsewhere, Kosloff has gone beyond the TST pseudo-elementary reaction
theories by developing a straight trajectory model [20, p. 187] which superimposes
trajectories with energy grids. More recent methods, such as developed by Miller [5]
involves going beyond TST where an exact trajectory is calculated “which is no longer
a transition state theory” [5, p. 387]. However, in these exact treatments, the isolated
participants only are included, e.g. [5, Eq. 46, p. 402] in

H + O2 −→ OH + O (28)

where the CRP (cumulative reaction probability) is calculated for the 4 atom system
(6−D calculations). The microcanonical rate constant k(T ) for a bimolecular reaction
A+BC → AB+C is defined such that k(T ) is the canonical ensemble rate coefficient
in the expression − d[A]

dt
= k(T )[A][BC] and k(T ) is determined from an integral

involving the CRP. A direct evaluation can also be made without CRP’s [5, p. 408,
Eq. 50] where the direct calculation involves a flux operator F̂ which is related to the
system Hamiltonian and trajectory which in all these treatments does not include the
rest of the environment variables. A recent example of such direct calculations in given
in [21] for gas phase reactions, where the flux operator is a type of commutator F̂ =
i
h̄
[H, θ(s)], where H is the system Hamiltonian and s are the trajectory coordinates

with θ being the heavyside function. Reference [6] is an excellent resume of the most
up to date prominent methods available, all conforming to the k = k(T ) assumption
for elementary reactions where no direct relationship with the activity of the species
has been deduced, as will be attempted here. A brief survey of the recent past also
does not yield any exceptions to the standard definition [22, pp. 36, 109, Eq. 3.25, p.
239, Eq. 7.38]. Espenson [23, p. 157] too, writes k = k(T ) for elementary reactions.
In developing the standard Brönsted-Bjerrum equation for the reaction A + B → P

(products), he breaks down this reaction into a sum of elementary reactions [23, Eqs.
9–22]

A + B
K

†
a�[AB]† → P, (29)

where he infers [23, p. 204], in keeping strictly with the rate constant definition that
“. . .The rate is taken to be proportional to the concentration (not the activity!) of the
transition state,” thereby deducing the standard form [23, p. 204, Eqs. 9–27] for the
Brönsted-Bjerrum equations as

k(T ) = kref

γAγB

γ † (30)

where in the present simulation, the reference state is the vacuum. Other treatises do
not differ in interpretation when they write [24, p. 3] “. . .Typically, rate constants
are independent of concentration but they may be quite sensitive functions of the
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Fig. 8 Variation of reactivity coefficients γ ′
A

and γ ′
A2

with ρ, the system number density at temperature

T ∗ = 8.0

temperature.” This independence of concentration for elementary reactions is main-
tained elsewhere, e.g. [25, p. 13, Eqs. 1–11], [26, p. 2] and [27, p. 35, Eq. 2.39].

3.3 Reactivity, activity and availability coefficients and ratios

Write

Q = k0
1γ

′2
A = k1

R = k0−1γA2
′ = k−1 (31)

where γA
′ and γA2

′ are defined as “reactivity” coefficients. In this system, the substrate
in which the chemical reaction occurs is the vacuum state with a defined zero of

energy relative to the component species. Obviously, γA
′ =

√
Q

k0
1

and γA2
′ = R

k0−1
are

computable since all the other terms are. These coefficients are graphed in Fig. 8. We
make the following observation:

Observation 1 γA
′ and γA2

′ are not in general unity, especially at higher ρ values.

According to the prevailing theories over the centuries, the rate constant proper is
independent of concentration for strictly elementary reactions. Activity coefficients
are only introduced via an equilibrium constant as a result of composite schemes where
some pre-equilibrium is postulated, the chief example being activated complex theory,
and the earlier and related ionic reactions based on the Brönsted-Bjerrum equation.
In the present scheme, pre-equilibria has been ruled out, because the non-reversible,
cyclical pathway of the reaction does not allow for such a situation. The results here
show that the conventional definition of the rate constant for elementary reactive
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processes is incomplete, unless the γ ′ reactivity factor is included, as summarized
below.

Lemma 1 Given that the temperature-only dependent portion of the rate constant k0
B

is always present, then its product with the reactivity coefficients are a necessary and
sufficient condition for the rate constant to be complete.

Proof Denote by [X] the presence of factor X and ∨, ∧ the logical ‘or’ and ‘and’
conjunctions respectively with ¬ the negation. Let the rate SB for species B be given
by

SB = k0
Bγ ′

B (32)

where γ ′
B are the reactivity factors (they may be product terms as for our A species).

Then [γ ′
B ]∧[k0

B ] ⇒ SB is complete since form (32) leads experimentally to an exact
description for all ρ values. The converse is

¬
(
[γ ′

B ] ∧ [k0
B ]
)

= ¬[γ ′
B ] ∨ ¬[k0

B ] ⇒ ¬SB. (33)

Since by hypothesis [k0
B ] is present, then [¬k0

B ] is false and so if γ ′
B is not present

implies SB is incomplete (which is impossible) �
Figure 8 provides for the following:

Observation 2 �k = γA2
′

γ
′2
A

is coincident with �e within computational accuracy for

all physically feasible ρ.

This is a remarkable and unexpected result from which further properties issue such
as:

Lemma 2 The general solution to Observation (2) is

γ 2
Ac(ρ) = γA

′2
γA2c(ρ) = γA2

′. (34)

where γA and γA2 are the activity coefficients.

Proof The reactivity coefficients for any species X is known i.e. γ ′
X = γ ′

X(ρ) and
γA, γA2 exists by hypothesis (Observation 2). Then ∃ di such that γ 2

Adi = γA
′2 and

similarly γA2di
′ = γA2

′. Observation 2 implies
(

di
′

di
= 1

)
for all ρ or di

′ = di for

every ρi . Define the function c : ρi → di or c = c(ρ) �
If c(ρ) is a more complex function than unity, we may rescale our apparent activity

coefficients such that we may relate the kinetically derived γ ′ reactivity coefficients
with the ‘actual’ γ coefficients determined from equilibrium distribution studies, so
that γA

′ = γAc(ρ)1/2, γA2
′ = γA2c(ρ) are used instead of the γ activity coefficient in

the chemical potentials for the system. That is, if the actual potentials are scaled, we
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wish to determine whether γA
′ and γA2

′ may be used as equivalent activity coefficients
when γA and γA2 are scaled by functions c(ρ)1/2 and c(ρ) respectively. As a matter of
interest, in the sections that follow, it will be shown that the chemical potentials refer
to purely isothermal reversible work terms.

Lemma 3 The scaled activity coefficients yield equivalent expressions for the Gibbs
equilibrium criterion for the same Gibbs standard chemical potentials, but the Gibbs-
Duhem condition demands c(ρ)=constant.

Proof Writing the rescaled chemical potential for any species p as µ+
p = µ∗ +

RT ln xpγp
′ and µp = µ∗ + RT ln xpγp for the unscaled potentials, then application

of Gibbs’ criterion for the scaled variables yields: 2µ+
A = µ+

A2
⇒ 2µA = µA2 by

algebraic cancellation and 2µA = µA2 ⇒ 2µ+
A = µ+

A2
by algebraic addition of ln c

on both sides of the equation. Hence either set (µ or µ+) of potentials may be used
to determine the equilibrium point where γp

′ represents the activity coefficient for
the µ+

p chemical potential set. The Gibbs-Duhem equation for the scaled system at
constant (P, V ) is

∑
i

xidµ+
i = 0 (35)

where

dµ+
p = dµ∗

p + RT d ln xp + RT d ln γp + RT d ln fp(c). (36)

Comparing (35) with
∑

i xidµi = 0 for the {µp} set, we derive

xART d ln c1/2 + xA2RT d ln c = 0 (37)

or
xA

2
d ln c = xA2d ln c (38)

which is generally a contradiction unless c(ρ)= constant, which implies c = 1 since
limρ→0 c(ρ) = 1 �

Corollary 1 From Lemma 3, either set (µ orµ+) may be used to determined the
equilibrium point, but there is only one specified activity coefficient set {γp}.

Corollary 2 If it can be proved that for any rescaled activity coefficient γ ′
i , there

can exist only one equilibrium concentration ratio satisfying the Gibbs equilibrium
criterion and the Gibbs-Duhem equation for the same chemical potential functions,
then c(ρ) = 1 and γj

′ = γj .

Corollary 3 The activity coefficients are unique in that if they are rescaled, then
c(ρ) = 1 only.

Corollary 4 From the invariance of the equilibrium constant due to the Gibbs crite-
rion, the rate constants between two states 1 and 2 due to catalytic activity are related
as follows:
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(
k1

k−1

)
1

(
k−1

k1

)
2

(
γA2

γ 2
A

)
1

(
γ 2
A

γA2

)
2

= 1 (39)

One may not expect the γ ’s to vary between two equilibrium catalytic states by mutual
cancellation but Eq. 39 is the general expression. Given the same mechanism, changes
of rate can only be affected by changes in the isolated intermolecular potentials, or the
net potentials due to the sum of all relevant interactions. Both these cases seem to imply
minute changes to the species type. Provided that these changes do not affect to first
order �G0

r for the standard free energy change, Eq. 39 should obtain approximately.
Since Q, R, and the γ ′s are functions of ρ, we can write Eq. 19 in the form

Q = k0
1

( ∞∑
i=1

aiγ
i
A

)
γ 2
A

R = k0−1

( ∞∑
i=1

biγ
i
A2

)
γA2 (40)

If R and Q are independent variables, it is not immediately obvious why the common
factor c(ρ) = ∑∞

i=1 aiγ
i
A = ∑∞

i=1 biγ
i
A2

must have the same non-constant value at
each ρ if we should vary the temperature: hence one might expect that c(ρ) = 1: if
this is not generally the case, then there is embedded within the MD potentials a yet
to be clarified link between the forward and backward rates.

The plot of the reactivity coefficient is given in Fig. 8 as a function of average system
density. Both coefficients extrapolate to unity. While the reactivity coefficient of A is
larger than unity, that of A2 is smaller than unity, and one might expect such behavior
to arise from the differing potentials and net surface area to volume ratio that exists for
these two species. The reactivity of species p, ap is defined by ap = γ ′

p. ρp where ρp

is the concentration (e.g. number density) of species p. A plot of the variation of these
quantities appears in Fig. 9, where the densities refer to the actual number density of the
concerned species and not to the general system density ρ. The looping of the curve for
A is very interesting because with increasing system density, the equilibrium constant
adjusts itself to accommodate an increasing reactivity coefficient for A, implying at
constant temperature a species density reduction, which explains the looping back
behavior of the reactivity for A. At the current state of development, one must use
physical arguments to determine whether the reactivity and activity coefficients are
identical or not. It is surmised that it is not from considerations of the estimates of the LJ
fluid activity coefficients relative to the boundary conditions imposed. It is estimated
that both the dimer and atomic activity coefficients either increase or decrease with
system density, and therefore cannot equal the reactivity coefficients where the trend
for dimer and atom are in contrary directions. It is then surmised that the activities
both increase with system concentration by comparison with the LJ fluid for the atomic
constituent. Before examining the thermodynamics of the single component monomer
A, we digress to an outline of a theory of internal species equilibrium that is of use to
describe species states along a reaction pathway.
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Fig. 9 Variation of reactivity aA and aA2 with ρA and ρA2 , the actual number density of the species
concerned at LJ temperature T ∗ = 8.0

3.3.1 Internal equilibrium of product species

It was conjectured that a subsystem described by non-canonical coordinates would
have a Boltzmannized energy distribution for the kinetic energy if the energy interac-
tion of the coordinate were due solely to external forces (due to the reservoir). This
conjecture is extended to the external potential here; in fact the Debye-Huckel (DH)
and extended theories of electrolyte solutions all make this assumption [28]. Under
this assumption, a particular species Z (being either product P or reactant R species
in the equilibrium R � P ) can exist in p varying energy states Z1, Z2, . . . Zp as enu-
merated by an appropriate algorithm. The enumeration may be with respect to energy
states in terms of a coarse grid of magnitude �E; such techniques have been developed
in recent times by Kosloff [20, p. 187] who superimposes reaction dynamics trajec-
tories with a gridded “energy range of molecular encounter �E . . . typically in the
range of 0–10 eV.” And It will be further assumed that a convenient algorithm exists
for this purpose. The example given here is for reasons of illustration, to show that
the activity coefficient may be determined at any point if a partial enumeration were
known, and to extend the DH theoretical assumption. The science of enumeration has
made much progress in recent years, especially in the characterization of species types
in mathematical chemistry, whose pioneers include Balaban [29,30]. The techniques
developed for chemical structures could conceivably be extended to these cluster types.
The temperature of each of the species in the enumeration is approximated as the same

as the system temperature T determined from 3kT
2 =

〈
pi

′2
2mi

〉
where it has been shown

that they may differ slightly since they are not the canonical coordinates [11]. Hence
this theory is an approximation. Then the chemical potential µZi

of each of these
states share the same standard state µ0

Z where µZi
= µ0

Z + kT ln ciγi with ci and
γi representing the concentration and activity coefficient respectively and for the Z
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species as a whole, its concentration ctot will be ctot = ∑p
i=1 ci and the bulk activity

coefficient will be denoted as γtot . The species equilibrium

Z1 � Z2 � Z3 . . . � Zp (41)

implies a form

kT ln cgmγgm = kT ln ciγi = kT ln cj γj (j �= i) (42)

where cgm and γgm will be determined. From (42), let αi = ciγi , then αi = αj = α′
since µ0

Zi
(T ) = µ0

Z(T ), and further define

kT ln

{
p∏

i=1

ciγi

}
= kT ln A. (43)

From (43),

kTp ln α′ = kT ln(c1c2 . . . cp) + kT ln(γ1γ2 . . . γp)

leading to

kT ln α′ = kT ln{c1c2 . . . cp}1/p + kT ln{γ1γ2 . . . γp}1/p (44)

Define

ln cgm = ln{c1c2c3 . . . cp}1/p

ln γgm = ln{γ1γ2γ3 . . . cp}1/p. (45)

Then cgm = {c1c2 . . . cp}1/p and γgm = {γ1γ2 . . . γp}1/p. Further (44) gives

kT ln cgmγgm = kT ln α′ = kT ln γici . (46)

It will be noted that (46) can refer to a partial (incomplete) enumeration where the ith
enumeration need not be in the set if the Gibbs equilibrium criterion obtains for the
ith species in equilibrium with the other species.
What is the relationship between the different c and γ coefficients?
For a complete enumeration over an energy grid, each of which has an energy difference
of magnitude �E, the average potential experienced by the species X is w, so that
w = kT ln γtot by definition, where µZ = µ0

Z + kT ln ctot γtot . The probability of
state i, pi is pi = ci/ctot and under the the canonical ensemble assumption above,
pi = exp −εiβ

Z where Z = ∑p
i=1 exp −εiβ is the partition function of the distribution

with β = 1/(kT ). By taking averages, the above yields

kT ln γtot = kT

p∑
i=1

pi ln γi (47)
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or

ln γtot =
p∑

i=1

ci

ctot

ln γi (48)

Hence, (48) leads to

ctot ln γtot =
p∑

i=1

ci ln γi (49)

Defining a departure from bulk value γ ′ where γi = γtotγ
′
i , then (49) can be written

in the form

p∑
i=1

ci ln γ ′
i = 0. (50)

by expansion of terms.
If the degenerate terms are all collected together, the canonical distribution can

be written pi = gi exp −βεi

Z . (Other modifications are straightforward and here Z =∑p
i=1 gi exp −βεi .) We assume p non-degenerate energy states. Since γi = exp βεi ,

then the probability term is pi = gi

γiZ and so

ln pi = ln gi − lnZ − ln γi (51)

so that (48) becomes

ln γtot =
p∑

i=1

gi

γiZ ln γi = 1

Z
p∑

i=1

gi

ln γi

γi

(52)

and for gi = 1 there results

ln γtot = 1

Z ln
p∏

i=1

(
γ

1/γi

i

)
. (53)

What can be said of γtot in terms of cgmγgm = α where (46) gives cgmγgm = α = γici?
From these definitions and (49), there results

ln γtot = cgmγgm

ctot

ln
p∏

i=1

(
γ

1/γi

i

)
. (54)

and comparing (54) with (53) implies

Z = ctot

cgmγgm

. (55)
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For degenerate systems, let ai = gi/γi , then

ln γtot = 1

Z ln
p∏

i=1

(
γ

ai

i

)
. (56)

Then (54) and (56) leads to a general coupled equation

p∏
γ

ai/Z
i =

p∏
i=1

γ

(
cgmγgm
ctot γi

)
i . (57)

Forcing independence of the γi is equivalent to equating exponents, leading to the
result

gi

Z = cgmγgm

ctot

. (58)

Similarly, (49) and the definition of α leads to

ln γtot = ln α −
p∑

i=1

pi ln ci . (59)

Using the definition for ci in terms of pi , we derive

ln γtot = ln
α

ctot

−
p∑

i=1

pi ln pi (60)

which has an interesting entropy-like contribution in the probabilities. Finally, the
maximum available potential energy for any one species γi must obey elementary
relations such as γgmcgm = γici and γici

γj cj
= 1, implying that one can determine the γ

terms if the concentration terms were known at any volume element of the chemical
trajectory.

3.4 Thermodynamics of fluid and discussion of the c(ρ) scaling function

Lemma 3 implies that since the activity coefficients are unique relative to scaling, an
attempt to estimate c(ρ) can come only from physical/kinetic experimental consider-
ations, where this function should not contradict ancillary data and estimates. One can
expect the activity coefficient of the A atom to be approximately that of the LJ fluid
at the same density and temperature at low dimer concentrations. A rationale must be
provided on how to estimate this quantity from available data. Some data exists [31,32]
for the LJ fluid up to T ∗ = 6.0. At such temperatures, the fitting is highly sensitive
to the γ coefficients, unlike what was reported [32, sect. 4, p. 607] (presumably for
much lower T values, where γ was regressed for 1 ≤ γ ≤ 7 with low correlation of
the minimum). The parameters for the various estimates for the monomer activity was
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scanned from the x(i) values in Table 4 of [31] and fitted into the equations found
in [32]. The residual or excess Helmholtz free energy in reduced units, which is the
difference between the ideal gas value and the actual value is given by [32, Eq. 5]

A∗
r =

8∑
i=1

aiρ
∗i

i
+

6∑
i=1

biGi (61)

with the pressure having the expression

P ∗ = ρ∗T ∗ +
8∑

i=1

aiρ
∗(i+1) + F

6∑
i=1

biρ
∗(2i+1) (62)

with F = exp(−γρ∗2), γ being a non-linear adjustable parameter. The excess free
energy G∗

r is given by

G∗
r = A∗

r + P ∗

ρ∗ − T ∗. (63)

The reduced units variables are denoted by ∗ superscripts, and the ai and bi coefficients
are given as complex polynomials in x(i) and T ∗ in the tables in [32]. It was found
that at T ∗ = 6, a good value for γ (to the nearest digit) was 2.7 which yielded the
fitting pressure of 12.7931, close to the experimental value of 12.43(2) in the phase
diagram. The simulations here were off-scale at T ∗ = 8.0, but nevertheless the value
of γ given above was adopted for estimating the excess free energies at the simulation
temperature as well as the atomic γA coefficients according to the theoretical model
below.

A circular reasoning has been detected in the definition of multicomponent Gibbsian
free energies [33, p. 706, Sect. 5] and the associated chemical potential, where it was
pointed out that the T dS term defined by Denbigh [8] sometimes referred to a heat
input term for multicomponent closed systems, and sometimes not, leading to an
undecided paradox, but where the chemical potential is a pure work term; in the new
exact thermodynamics [33, p.707, after Eq. 30], the chemical potential is a mixed
heat-work term. In this work, we shall conform to conventional descriptions, thereby
reinterpreting the physical meaning of some of the standard expressions. It will be
argued here that relative to the concentration where the chemical potential is written
µi = µ0

i + kT ln ciγi , and where this term represents isothermal work done on the
system, the excess Helmholtz energy A∗

r seems to refer to the γi activity coefficient
(here analogous to the “fugacity”) coefficient and not the excess Gibbs free energy
G∗

r for the reasons that follow. For a single phase at constant temperature, dG = V dp

and for a perfect classical fluid �G = ∫
V dp = − ∫

pdV where the work loss on the
system is equivalent to �G but this is not true of imperfect systems. It will be proved
from the Kelvin-Clausius statement that the external work (if it were the sole work
source) takes into account the internal intermolecular forces. The chemical potential

µi ≡
(

∂G
∂ni

)
T ,P,nj

, despite being defined as [8, p. 79] “. . .the amount by which the
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capacity of the phase for doing work (other than work of expansion) is increased per
unit amount of substance added. . ..” is often written in the form

µi = µ0
i (T ) + kT ln ciγi (64)

for substance i. The definition by Denbigh may perhaps be reflected in the view
of some others who suppose that even for single phase systems, it is believed that
G/N ≡ µi [34, p. 83]. Indeed, for a single phase system, some have identified the
chemical potential with the Gibbs function as U −T S +pV = µn = G with n being
the amount parameter [34, Sect. 7.3, p. 83].

This would suggest that for multicomponent systems, the free energy differential
written

dG = −SdT + V dP +
∑

i

µidni (65)

implies that the chemical potential refers to a contribution to the free energy to the
state at constant p and T [35, p. 126] with the material addition dni . Then from
G = ∑

i niµi [35, p. 255, Eq. 9.23], the one component form suggests that ∂G
∂ni

= µi or
∂(µini )

∂ni
= µi or ∂(kT ln ciγi )

∂ni
= 0 for all species i which is undemonstrated. Furthermore,

for imperfect fluids
∫

V dP �= − ∫
PdV generally and so does not appear to constitute

a pure external work term for single phase, single component systems; if it were
nevertheless the case, then

Gex,i = Greal,i − Gid,i = µ0(T ) + kT ln ciγi − µ0(T ) − kT ln ci

⇒ γi = exp

(
Gex,i

kT

)
. (66)

To estimate the activity coefficient of the LJ fluid, one must refer to the excess work
done on the particle δwex,i , where conventionally, the activity coefficient γi refers to
this work. [28, Chap. 1, pp. 4–8] where kT ln γi = δwex,i ; it will be shown that the
term kT ln ci refers to the external work done on the system to the state concerned,
and this work is also equivalent to introducing unit amount of substance i from the
standard state condition of unit activity coefficient. The work done for a perfect fluid
on the system is

δw = −NkT ln
V2

V1
= NkT ln

c2

c1
(67)

between states 2 and 1. Under the typical convention c1 → 0, γ1 → 1, the standard
state c1 leads to a singularity in this limit. Write δciMi = 1 for any small value of c1
of amount δc1 when γi → 1. So, Mi → ∞ but for any small δci , it is a large finite
number. The form of the chemical potential, if rescaled to conform to these limits must
be of the form

µ′
i = µ0′

i (T ) + kT ln
ciγi

[1Unit] . (68)
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But whatever the scaling, the form and value for these variables match, i.e. µi = µ′
i

where µ0
i refers to a standard chemical potential of isolated substance i as ci → 0

since the physical meaning of µi must be preserved. Thus,

µ0
i (T ) + kT ln

γici

[δci] = µ0
i (T ) + kT ln Mi + kT ln

ciγi

[δciMi] (69)

so that

µ0′
i (T ) = µ0

i (T ) + T · Qi (70)

where

Qi = k ln Mi. (71)

Let substance i, also termed substance A be the basic constituent from which all other
substances are formed. Other substances are built upon this primary substance, where
in general

An + Am → Am+n (72)

and the subscript m refers to the number of units of A making up substance Am. For
instance for the reaction nA � An, the standard state chemical potential µ0

An
(T ) for

An is defined as

µ0
An

(T ) = nµ0
A + δµ0

An
. (73)

Here, δµ0
An

refers to the work required to form An from n units of A. For all reacting
species Aq , a common lower end concentration limit is imposed where

δcAn = δci = δcA = δcAq (74)

for all n and q. Because of this, we can write

µ0′
An

(T ) = n · µ0′
A + δAn (75)

where

µ0′
A = µ0

i (T ) + T Qi (76)

with Qi = k ln Mi . But from (76)

nµ0′
A = nµ0

i (T ) + nT Qi (77)
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and from (75) the following results

µ0′
An

= nµ0
i (T ) + nT Qi + δAn (78)

= nµ0
i (T ) + nT QAn + δAn (79)

But (73) yields by comparison to (79)

µ0′
An

= µ0
An

+ nT QAn. (80)

The equilibrium criterion gives

− �G0 = −�G0′ = −
M∑

j=1

µ0
j νj = −

M∑
j=1

µ0′
j νj = kT ln Ke (81)

and (80) gives

M∑
j=1

µ0′
j νj =

M∑
j=1

µ0
j νj +

M∑
j=1

(
njT Q

)
νj (82)

Now, nj is the number of elementary species i that constitutes j , and this quantity is
always conserved (from a chemical point of view) and T and Q are common, leading
to T Q

∑
j nj νj = 0. This verifies (81) and infer that the same equilibrium point is

reached. It follows that we may ignore the terms that cancel off if only equilibrium
problems are of significance, and write the chemical potential for equilibrium problems
as

µ′′
i (T ) = µ0

i (T ) + kT ln
ciγi

[1] (83)

where the potential here is a measure of the work done on a particle i in isolation where
the singularity of the point at ∞ (ci = 0) has been removed. The above establishes
the fact that the form µ′′

i (T ) = µ0
i (T ) + kT ln ciγi is an isothermal work term with

removed singularities at zero concentration, consisting of the work used to overcome
the internal forces and the external ideal work.

3.4.1 On Helmholtz heat-work interchange

An approximate value for the multicomponent activity coefficient may be derived from
the Helmholtz free energy for single systems by considering the work-heat transfor-
mations. The single component Helmholtz free energy A is given in standard form
as A = U − T S, where its differential dA = dw − SdT implies that at constant T ,
the work done on the system dw is the so-called external work (such as the P − V

work connected with compression) where for fluids, dA = −PdV = dw. For fluids,
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3 basic categories (i–iii) of compression from state at concentration δc1 to c (where
the lower concentration is at δc1) must be examined as follows:
(i) Ideal fluid compression: The reversible work of compression is δw = kT ln c

δc1
and let the heat absorbed be −δq. The energy change between the states (subscripts
denote the state for the variable concerned) �Ei = Ec − Eδc1 = δw − δq.
(ii) compression of gas by manipulation of internal forces: Here two separate sub-
parts are considered where (a) is generally applicable and is in the standard format
of a conventional thermodynamical system and (b) develops an internal potential
description with control of the particle potential. For both cases, divide the path into
interval segments with states S indicated by subscripts: S0(at δc1), S1, S2 . . . Sn (at c).
For (b), we suppose that the external pressure P of the imperfect gas obeys P ≥ Pid ,
due to the repulsive intermolecular forces relative to the perfect gas with pressure Pid

for any concentration ci for state Si . For a segment for which the opposite inequality
holds, the same conclusion of the theorem obtains and so a general path may be
broken up into subsections with one or other of the inequalities obtaining (where it is
assumed that the pressure is continuous over the path), implying the general validity
of the theorem. Method (a): Start with a perfect gas and compress reversibly to Sn. At
Sn, we “charge up” the gas by introducing a potential with an interaction parameter ε

say. In Debye-Huckel theory of solution activity, where the charge of the ions assumes
the variable ε; in a LJ type potential system, a possible ε parameter for the potential

µ(r) is µ(r) = ε
(

1
r6 − 1

r12

)
. For any potential and given particle coordinates, we can

in principle compute the total potential of interaction. For each particular value of ε

we can calculate the mean energy of interaction per unit increment of ε. Integrating
this yields the average energy of potential interaction as wfa . During this charging
up process, heat energy will be absorbed by the system of amount −δq ′

m during the
manipulation where the system is at a fixed temperature T . For the entire compression
process, the total heat absorbed is

− δq ′ = −δq ′
m − δq (84)

Then the total change in energy is

�E(ii) = δw + wfa − δq ′ (85)

where wfa is perhaps a novel diathermal work term involving internal potential vari-
ables; the standard methods hitherto used seem to suppose no heat transfer during
the charging process and possible fundamental flaws in the thermodynamics might be
introduced as a result.
(iii) The third process is reversible isothermal compression of the imperfect gas by
doing P − V work from S0 to Sn at concentration c, where −δqc of heat is absorbed
by the system. The total change of energy will be given by

�E(iii) = δwc − δqc. (86)

Since the final and initial states are the same, then the First Law implies �E(ii) =
�E(iii) but nothing thus far can be said about the δq’s, i.e. δq ′ need not equal δqc.
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Suppose in fact that the heats are not the same δq ′ �= δqc. A cycle of state transitions
can be carried out as follows:

Sδc1

step(ii)→ Sc
step(iii)→ Sδc1 (87)

For this cycle, the First Law yields

δw + wfa − δq ′ − δwc + δqc = 0 (88)

leading to

(δw + wfa − δwc) = (δq ′ − δqc) �= 0 (89)

or the effect in this cycle is the NET conversion of heat to work about an isothermal
cycle, which is in contradiction to the Kelvin-Clausius Second Law postulate [36, p.
101]. Hence, δq ′ = δqc.
For the above, we have extended the scope of the traditional understanding of the
system as given to manipulation of the internal potential of force interactions. This
result may be stated thus:

Theorem 1 The heat absorbed by a system during an isothermal transition is equiv-
alent to that which is absorbed by an ideal system and the heat absorbed when an
intermolecular potential is introduced within the system.

Corollary 5 The reversible work performed during a system transition is that due
to the work for an equivalent ideal system and the potential energy change due to
intermolecular forces and therefore the excess work done relative to the ideal fluid is
due to the intermolecular potential energy change of the system.

Proof The first part follows from δwc = δw + wfa from (89) and Theorem 1, and
the second from δwc − δw = wfa �

Corollary 6 The change in the excess Helmholtz free energy δAex is equal to the
change in the intermolecular potential energy for the system.

Proof By definition, δAex = δwc − δw and this quantity is given by Corollary 5 by
wfa �

Corollary 7 The activity coefficient for a single component system γi relative to the

standard state is given by γi = exp
(

δAex

kT

)
.

Proof Since δwc = kT ln γic
δc1

, δw = kT ln c
δc1

, and δAex = δwc − δw then δAex =
kT ln γi �

In the dimeric reaction 2A � A2, for lower A2 concentrations (lower ρ values), the
limit γA,pure (pure phase) → γA,reaction, the activity coefficient for the reactive system
A is exactly as for the single component fluid because the force fields acting on A
are essentially the same as for the pure component, except there would be clumps of
A atoms held together by intermolecular harmonic potential whenever A2 is present,
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Fig. 10 Computed monomer-only activity from residue Helmholtz (A) and Gibbs (G) functions

but these internal forces do not affect the external forces acting on the A atom. This
identification and limit is used to choose the general form of γ versus ρ curve for
atom and dimer, since the two different assumptions that are used leads in one case to
semi-quantitative agreement of γA for the reaction and γA,pure (pure phase), and it is
therefore inferred that the system conforms better to one of the two assumptions made
to derive estimates of the activity coefficients. Clearly, only one of these must obtain
from the previous deduction (Corollary 3) concerning the uniqueness of the activity
coefficient. We can infer that the results from Fig. 15 is the more consistent one by
referring to the monomer situation, for which some data exists, and by estimating the
monomer activity from the data and to then infer that the form and trend provided
for the monomer at lower concentrations should be approximately that for our pure
atomic species as deduced from readily available functions. These functions were
estimated for values of temperature up to T ∗ = 6.0 and therefore are not adequate for
higher temperature estimations. Nevertheless. even for T ∗ = 6.0, the values follow
exactly the same trends as for the results here at T ∗ = 8.0, including the activity
estimates all much greater than unity. The γ estimates are derived from Eq. 66 and
the expression from Corollary 7. It is clear from Fig. 10 that the activity estimates
show values all greater than unity. The system ρ for this figure and all others refer
to ρsystem, all in reduced units where ρsystem = ρA + 2ρA2 , where ρA is the number
density for the monomer (Atom) and ρA2 refers to the dimer species number density
in this homogeneous system at equilibrium. Figure 10 is computed for the situation
ρAtom = ρsystem. Since what is being depicted is the external potential work done in
bringing the atom to the system, then the forces acting on the atom can arise from
either the dimer or the atoms within the system, and since the potentials are of the
same LJ form for each nucleus, then we would expect this density to be the most
appropriate one. If we just consider what the activity might be for the actual density
of the monomer, ignoring its interaction with the dimer, then then Fig. 11 gives the
results from the simulation results and the fitting functions for Gres and Ares where
the system concentration ρ ≡ ρA.
Finally, if we supposed that whatever energy that is available to the monomer is lost
whenever a dimer is formed from the activation energy, then the available energy per
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Fig. 12 Estimated activities from the residual energy left after dimer formation using density distribution
data from the simulations

atom is given by Fig. 12. What is meant in this case is that let the residual free energy
per particle be Fr , where Fr = Gres or Fr = Ares . The vacuum activation energy is

17.652. So the net energy left per particle is surmised to be Fres = FrNA−17.652NA2
NA

=
Fr − 17.652ρA2/ρ and γFres = exp(Fres/(kT )∗) which is a measure of the available
energy after dimer formation. This expression is plotted in the figure mentioned above
where NA is the number of atoms for that general system concentration in the MD
cell. These figures are plotted to determine which would be the best approximation to
the first order theory of elementary reactions developed here.
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3.5 Considerations in Hamiltonian systems

Recently, it has been proved [37] that the Liouville theorem, and in particular the
Liouville space, of cardinal importance to both classical [38] and quantum-mechanical
theories of dynamics and statistical mechanics [39] does not obtain typically in stan-
dard applications; and therefore that non-Hamiltonian theories posited using Liouville
space, such as developed by Tuckerman et al. are equally suspect [37, Tuckerman et
al. references within]. A work which does not imply a steady state but a disintegrating
system which preserves a certain form of entropy had been described earlier without
recourse to Liouville space and operators, and which considers the Jacobian of a trans-
formation [40]. “Non-Hamiltonian” systems has been variously described, including
their relation to thermostatting using a pseudo-Hamiltonian that forces constant con-
ditions such as pressure or temperature [41]. It should be noted that many of the
synthetic thermostats were designed with the belief in the Liouville theorem. As such,
it would be expected that equilibrium properties might be computed if the phase-space
covered follows the canonical energy distribution for the coordinates. However, if the
cause of the canonical distribution is not due to a smooth Hamiltonian trajectory, but
to external random impulses, then it can be inferred that the real time behavior of
particles described by such pseudo-Hamiltonians over any short enough time interval
δt would not follow the prescribed pseudo-Hamiltonian trajectory. Such an inference
implies that the dynamical behavior of the ensemble of particles would not correspond
to the actual possible trajectories with random perturbing forces. It then means that
molecular simulation with such pseudo-Hamiltonians would not yield realistic tra-
jectories which could explain real-time, non-averaged behavior over very short time
intervals where random impulsive forces were acting; in particular, biological system
function based on real time changes of coordinates cannot be accurately simulated by
such pseudo-Hamiltonians if their main mode of dynamics involves random perturba-
tions, such as from a reservoir. Another presupposition concerns the static nature of a
Hamiltonian system [41, p. 496] and the supposed effects of “walls” and constraints
in the Hamiltonian: “. . .The notion in phase space of Hamiltonian system is similar to
that of an incompressible liquid; in time the volume of the ‘liquid’ does not change.
In contrast, a non-Hamiltonian system is compressible. This compressibility must be
taken into account when considering the generalization of the Liouville equation to
non-Hamiltonian systems.” On the other hand, from the work presented in [37], it may
be inferred that for any Hamiltonian form

HE =
∑ p2

i

2m
+ V (r) (90)

one can consider the “walls” and other physical constraints of the system as perturba-
tions to HE where V (r) does not refer to the wall interactions; for perfectly reflecting
walls, for instance, a micro-canonical distribution results, the canonical one obtains
for the single system. The system trajectory is Hamiltonian over the time intervals
τi = ti − ti−1 for the set of time coordinates {t0, t1, t2 . . . tm, . . . t∞} of interference
by random energy interchange by the wall or/and thermostat at time ti ; here the walls
and energy interchange achieves at least two functions (i) it defines the boundary
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∂C and (ii) acts as a thermostat in terms of energy interchange and the change of
system trajectory not determined by the Hamiltonian. If the energy levels are quasi-
continuous—which certainly is for this dimer system—then HE will be distributed
with a canonical energy distribution P(E) ∝ exp −βHE according to standard statis-
tical mechanical theories [42, pp. 1–3]. For the Hamiltonian system given here, Eqs.
10–13, the K.E. profile of (i) the “Atom” is confined to that segment of the potential
curve where there is no bonding, and (ii) the product A2 to the molecular potential
well, with (iii) the “transition state” point located at two different points rf and rb. The
coordinates of the defined quantities (i–iii) are not in general the canonical coordinates
of the entire system Hamiltonian. These coordinates represent transient species and
the energy terms for these coordinates may or may not be canonical [11], and if they
have a Canonical energy (CE) distribution—such as the K.E. of the centre-of-mass
of the dimer—then its apparent temperature defined as 3kTa

2 = <K.E.c.m.> need not
correspond to Ts , the system temperature. It was discovered [11] that the mean K.E.
of the atom A and dimer about the C.M. followed the C.E. distribution, with apparent
temperatures slightly differing from Ts . This result is not unknown, since within a
reacting system, apparently different temperatures have been experimentally detected
[43] for the different species in a plasma. Gibbs and his equilibrium criterion suggests
that all species at equilibrium must have the same temperature; we observe that experi-
mentally this is not the case, where relative to the C.M., the temperature corresponding
to the K.E. is close but not equal, i.e. TA ≈ Ts, TA2 ≈ Ts but TA �= TA2 . Currently, it
is unclear whether TA = TA2 = Ts as ρ → 0 but this assumption was used for a new
theory of energy interconversion [1]. For an elementary reaction species i → prod-
ucts at very low pressure or concentration, the rate constant k0

i (T ) (ρ → 0), is derived
assuming that the work done against the interparticle force due to reactant Ai is derived
from the kinetic energy of the particles at a particular geometrical locus determined
by the impact parameter and geometry of the potentials and the activation energy; all
these factors � are almost always considered invariant in Q.M./classical reaction rate
theories since they are strictly mechanical properties, so that k0

i = k0
i (�, Ti,o) where

it is conventionally assumed that Ts = Ti,o; for this model, the minimum impact para-
meter is at rf = 0.85 with the activation energy at 17.5153. At other concentrations,
the reaction pathway system would have to be perturbed; this situation is not normally
considered even in advanced treatments [6]; the perturbation suggested here are the
energy levels of activation; there would be other effects, of first and higher orders
which perturbation theory can provide. The object of the current work is to provide
an outline of a theory with estimates of the more important effects which can account
for Observation 2 and Lemma 2. A second order effect concerns the change of mean
kinetic energy of the molecules from the zero state δWi,K.E. (meaning the state as the
density ρ → 0) where

δWi,K.E. = K.E.(CM, Ti,ρ) − K.E.(CM, Ti,o) (91)

but would not be considered further; obviously this perturbation would affect the
number of activated atoms/molecules. The general perturbation is from a reaction at
zero density (almost always the form given in standard theories) with rate constant
k0
i = k0

i (�, Ti,o) to that at any other density which is the actual equilibrium state
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(a.e.s.) ki = ki(�, Ti(Ts)); i.e. a mapping from these two states is required. In the ideal
state formulation (for example SCT), absolutely no other environmental interaction φe

of particle/complex reactants i with j is envisaged up to the collision distance σ . In the
perturbed state, on the other hand, for rij > σ , φe(rx) �= 0, x = i, j for the coordinate
rx of particle x. We note that for the vacuum state for which k0

i is defined, φe = 0
for any particle participating in the reaction. The work done δwi,ρ in transferring a
particle i from the standard state of zero density (identified with the rate constant k0

i )
to a.e.s. is trivially

δwi,ρ = kT ln γi (92)

with γi being the activity coefficient. The concentration term corresponding to the ideal
external work does not feature since it is a common term for both the ideal and non-
ideal states. In (92), γ can be determined from MD by calculating the mean potential

φi for any system ρ, where γi = exp φi

kT
. Standard MD gives the same quantity by a

particle insertion method [44, p. 349, Appendix C] where µres = kT ln γi and µres

has the form

µres = −kT ln

[
1

<kTin>3/2

〈
(kTin)

3/2 exp

(−Ut

kTin

)〉]
(93)

with Ut being the instantaneous potential of the test particle interacting with other
particles. An obvious generalization of Eq. 90 involves writing a Hamiltonian of M

primary particles with a boundary ∂C not incorporated into the Hamiltonian in terms
of a potential, with instantaneous energy Ei , which would fluctuate when it exchanges
energy with the boundary which incorporates a heat reservoir in the form

HEi,∂C =
M∑
i

p2
i

2mi

+ V (r1, r2, . . . ri . . . rM). (94)

Although the Hamiltonian (94) is invariant in its form, the system ∂C determines the
density of energy levels and the relative energy levels; by equipartition, the average
kinetic energy is invariant for all enclosed boundaries, but the potential energy is not,
since it is possible to set ∂C such that the intermolecular distance of particles i and j

is
∣∣rij ∣∣ ≤ C and I could therefore arrange a lower bound by suitable compression and

choice of the boundary ∂C such that V (r1, r2, . . . ri . . . rM) > B∂C . The Canonical
distribution for the Hamiltonian would obtain if the degeneracy is very great, according
to the principles developed in the Feynman development [42]. Thus relative to the zero
density state, where the maximum

∣∣rij ∣∣ → ∞ and min|V (r1, r2, . . . ri . . . rM)| = 0,
the mean potential energy changes with the boundary (and therefore system density);
further, the mean potential experienced by dimer and reactant atoms would also differ
with density changes; hence relative to the zero density reaction scheme, the additional
potential energy present is available to overcome the activation barrier of the reaction.
The total available energy is δwi,ρ , and for the ground state reactants, this energy would
lower the apparent activation energy, and will be used to parameterize the change in
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Fig. 13 Single stage model with external potential interaction leading to chemical reaction, and which is
similar to the elementary Bjørn-Bjerrum theory of ionic reactions where (B) denotes the backward direction
and (F) the forward direction of the Dimer reaction in Eq. 9

activation energy; it will be noted that there might exist the possibility that not all this
energy might be utilized in extremely fast reactions where “molecular chaos” and the
adjustment of neighboring particles is not rapid enough for the full utilization of this
potential. Further investigations, both theoretical and experimental would be required
to elucidate these remarks. Hence a flexible approach is required to interpret the γ ’s
which may in some cases be a fraction f in value to the thermodynamical γ ; the results
here indicate f ≈ 1.

The proposed models for particle interactions yielding chemical reactions for the
forward (F) and backward (B) steps are given in Figs. 13 and 14 below. These models
enable one to calculate the activity coefficients where one model contradicts experi-
mental observation whereas the other does not, in addition to corroborating the deduc-
tions of the activity from thermodynamical functions.

The inverse � convention yields the activity coefficients given in Fig. 15. On the
other hand, the non-inverse � convention yields results for the activity coefficient
given in Fig. 16 based on the theory which follows.

It is of interest to determine the activity coefficients by direct calculations because
the Kwong-Redlich and associated equations [45, p. 29], [46] used to determine activity
coefficients for multicomponent mixtures are not easily extended to chemical reac-
tions: part of the difficulty is that the component concentrations in their thermodynam-
ical mixtures are free to vary independently, and may be fixed at any arbitrary value:
this cannot obtain for reactive systems because of the relational dependence of the
components via the equilibrium constant, and partial derivatives of thermodynamical
quantities used to determine these coefficients demand free variation or fixing of con-
centration terms that is not realizable in a reactive system. Moreover there is the need
to determine the variation of c(ρ) over the entire system density because of its theo-
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Fig. 15 Activity coefficients using the inverse � convention due to boundary conditions

retical significance linking � and �′. The next section provides a broad methodology
where the exact methodology appears not to have been worked out but verification of
the above would constitute another method of determining activity coefficients from
rate measurements.

3.6 Models based on simulation results

The elementary rate constants have the form [10]

ki = A(T ,�) exp
−E

kT
(95)
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where E is termed the activation energy and � are variables intrinsic to the reaction,
such as impact and structure parameters. The object here is to relate the γ ′ reactivity
coefficients to the γ availability (activity) coefficient based on the first order single
or two stage energy perturbation mechanism (Figs. 13, 14) respectively. Refinements
include perturbing the pathway itself, and introducing a continuous potential field
along the entire length of the reaction pathway. The object here is to present a broad
framework where calculations to any degree of accuracy might be attempted. For both
these mechanisms, A∗

2 and A∗ are the states of the reactants just prior to product
formation. The first order perturbation lifts the degenaracy of the ∗ levels relative to
the vacuum state; in the vacuum state, no singularities are observed in the potentials.
Singularities due to the perturbation arises because the product and reactant states are
distinct and distinguishable, and need not have the same activity in general; the form
factor A(T ,�) is not altered to first order since they specify the type of reaction; only
E is altered due to the external potential that modifies the ground state energies of the
particles relative to the vacuum level. The availability coefficient γX is expressed as

εX

kT
= ln γX (96)

for any species X, and the excitation energy is written δB for species B. For what
follows, ε always refer to an energy term associated with the activity or availability
coefficient. In the single stage model, the upper X∗ species is perturbed by an absolute
energy amount given by γX∗ in (96); for the double stage model, the upper level
is perturbed by the relative energy �E0{F,B},2, due to the singularity induced by the
change of state from product to reactant or vice-versa. The lower state for both models
are perturbed (lessened) by the same factor γX since this is the ground state availability.
It will be shown that the 2-stage relative model is the more accurate and logical, based
on a comparison with estimates of the activity coefficient for the monomer or atom
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A. The backward activation energy εb
act for A2 → A∗

2,out → Product for either the
1 or 2 stage model can be written (superscript o refers to the vacuum state)

− εb
act = −ε0

b + εA2 − δA2,out (97)

where we also write δA2,out = δAb · δAb. These terms refer to the upper state pertur-
bation of the A∗

2,out species. The forward model yields

− ε
f
act = −ε0

f + εA + εA − δA2,in (98)

where δA2,in refers again to the upper energy state energy perturbations. Using (96)
to convert to availability, where δX = kT ln γX, (97, 98) yield

γ ′
Aγ ′

A = γAγA

γA2,in

. (99)

On the other hand, the exact experimental condition in Observation 2 can be written
� = �′ where the prime refers to the same expression in γ ′

X where

γ ′
A2

= γA2

γAb
γAb

= γA2

γA2,out

. (100)

Hence, (99–100) leads to the exact result

γA2,in

γA2,out

= γA2,in

γAb
γAb

= 1 (101)

or δAb · δAb = δA2,in. In view of the fact that the product/reactant potential interface
is completely different from the reactant/product potential interface for this hysteresis
dimer, the result of (101) is indeed remarkable and may be stated as a kinetic principle:

Principle 1 The perturbed energy required to promote reactants to products at the
reactant/product potential interface is of the same magnitude as for the reverse tran-
sition of products to reactants at the product/reactant potential interface, even if these
interfaces are discontinuous, i.e. are spatially and energetically distinct, for elemen-
tary reactions in equilibrium.

Figure 1 shows that for this study the interfaces are distinct; “reversible” pathways
have coincident interfaces.

3.6.1 Two stage backward reaction model

In view of (101) we can write the exact form

γ ′
A = γA√

γA2,out

(102)

γ ′
A2

= γA2

γA2,out

(103)
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If a complete characterization of the γA2 species were known, then γA2,out could be
calculated from the theory presented in Sect. 3.3.1 especially expressions (46). Some
estimates or approximations may be made to determine the γ ’s. The reaction pathway
for this 2 stage backward step model may be written

Reactants(a) → T .S.reactants(b) → T .S.products(c) (104)

When considered in isolation, (normal vacuum state analysis), there is continuity of the
potentials between states (b) and (c) in (104). On the other hand, if the environment is
considered where species are either reactants or products, singularities in the energetics
would develop about the same arbitrary volume of theT S of the reaction coordinate; for
instance at (b), two atoms in proximity A . . . A are separated by distance δrA,A and the
mean activity of this state is strongly influenced by the potential V (δrA,A) dependent
on the δrA,A distance, in addition to the surrounding non-participatory environmental
molecules V ′(rothers). On the other hand, at the same vicinity (c) where the switch
modifies the potentials, then the activity of the instantaneously formed molecule would
be determined by V ′(rothers), where V (δrA,A) now represents the potential of internal
coordinates not connected to the activity. An apparent discontinuity arises according
to this first order treatment, which has no apparent analog in the traditional or other
QM theories computed at vacuum densities. For the two stage reaction, two types of
approximations for activity coefficients may be made for the forward (F) 2A → A2
and backward (B) A2 → 2A kinetic pathways and the results may be checked with
the apparent activity coefficient values derived from the LJ single phase fluid.
B. Process: The first order perturbation energy E(γA2, out ) is

E(γA2,out ) = 2εAb
− ε∗

A2
(105)

where Ab denotes the product atom just dissociated from the dimer at coordinate of
species A∗

2. The following approximation will be derived;

δA2,out = γAb
γAb

γA2

(106)

where γAb
≈ γA. Clearly, δA2,out serves as a “retardant” to the rate for positive

ε’s in the numerator of (106). Figure 14 can be correlated with (104) as follows:
E0

B,1 is the activation energy to the level A∗
2, which consists of two degenerate states

relative to the vacuum denoted T S(b) with molecule A2, and T S(c) which refers to
the two atoms 2A after dissociation; in real time the molecule disintegrates along
the trajectory (a)A2 → (b) → (c) according to (104). Unlike the atom, the dimer
state may be characterized according to the inter particle A–A distance rA−A, (as
well as the magnitude of the external potential). The mean external forces acting
on this dimer would lead to a potential which is to a first approximation relatively
invariant, even if the internal potential and internuclear distance varies; thus we assign
ε(A2(a)) ≈ ε(A2(T S, b)). The potential energy is utilized to overcome the activation
barrier; the boundary ∂C imposes a fixed density on the system which elevates the mean
potential of the reactants relative to the vacuum ground state. During the transition
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to the state T S(b), external forces with a mean potential ε(A2(T S)) would operate
on the dimer; rb = 1.20 for this reaction, where for a b.c.c. approximation for a LJ
fluid at ρ = 0.70, the approximate nearest neighbor distance is 1.22, implying that the
environment of A(T S) is very close to that of the bulk or generic A atom, i.e. a typical
atom with activity coefficient γA, so that the transition state A2 availability coefficient
for the atom γA,T S can be equated with the bulk, γA,T S ≈ γA and the relative energy
to be overcome from this T S state is �E0

B,2 where �E0
B,2 ≈ (2εA(T .S.) − εA2(T S))

leading to

exp −�E0
B,2

kT
≈
(

γA2

γAγA

)
. (107)

Because exp −�EB,1 = exp −�E0
B,1γA2 , we have the forms for the backward rate

given as

kB ≈ k0
BγA2

γA2

γA,T SγA,T S

≈ k0
Bγ ′

A2

≈ k0
BγA2� = k0

B

γA2

(1/�)
. (108)

But (107–108) implies

γ ′
A2

= γA2

γA2 , in
⇒ γA2,in = γA2,out ≈ 1

�

leading to the useful approximation

γA2 ≈ γ ′
A2

�
(109)

From (103), γA2 = γ ′
A2

γA2,out so that (106) follows with γAb
≈ γA. Since γA2,in =

γA2,out , and γ ′
Aγ ′

A = γAγA

γA2,in
, we get

γA ≈ γ ′
A√
�

. (110)

Since the r.h.s. of (109–110) are available, we plot γA and γA2 in Fig. 15. We expect
γA to be close or at least follow the trends of those derived from the Free Energy
estimates given in Figs. 10–12, especially Fig. 10. The other two figures were plotted
to show that the coefficient estimates are all greater than unity (>1). As expected
from the theory provided, the activity coefficients from the Ares function show semi-
quantitative agreement with the simulation results. The other Ares functions which
eliminate the dimer contribution shows markedly lower values; we would expect a
slight lowering of value due to dimer interference, leading to the conclusion that
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simulation results with the above two models are plausible, and that Ares is the more
appropriate function to use for estimation. Since the adjacent atom in the dimer cannot
contribute to the potential energy of the dimer contributing to its activity, one would
expect its coefficient to be lower. The (B) reaction above has its counterpart in the
forward (F) reaction, but because the transition state atomic activity coefficient is
severely affected by its own force acting on the other target atom, it would not be
reasonable to assume that the activity coefficient at that T S state due to the particle
potentials can be equated with the bulk activity, especially when the internuclear
distance at rf = 0.85 corresponding to an energy of over 17.0 LJ units! However
it would be instructive to follow through the consequences of this approach so that
comparisons with the activity coefficients derived from the literature may be made.
F. Process Using the same arguments as for the B process, Fig. 14 (F process) gives
the net elevation of the vacuum levels about �E0

F,2 such that

exp −�E0
F,2

kT
≈
(

γ ∗
A2

γ ∗
Aγ ∗

A

)
. (111)

The ground state relative to the vacuum is elevated by εA per particle, so that

EF,1 = E0
F,1 − 2εA (112)

where as usual the ε’s to the potential energy associated with the availability coeffi-
cients. The total activation energy �EF,tot is then given by

�EF,tot = EF,1 + �E0
F,2 (113)

By the definition of the reactivity coefficients,

γ ′
Aγ ′

A = exp

[
2εA − �E0

F,2

kT

]
(114)

and (114) leads to

γ ′
Aγ ′

A = γAγA

/(
γ ∗
A2

γ ∗
Aγ ∗

A

)
(115)

where the asterisked states are at the T S. Despite the arguments above, if we were
to make the approximation γ ∗

A ≈ γA (where in general, only a detailed perturbation
theory would yield an appropriate value of γ ∗

A) then γ ∗
A2

≈ γA2 and γ ∗ ≈ γA yields

γ ∗
A2

γ ∗
Aγ ∗

A

≈ � (116)
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Then (115) implies

γ ′
Aγ ′

A = γAγA

�
(117)

yielding

γA ≈ γ ′
A

√
� (118)

γA2 ≈ �γ ′
A2

(119)

since here � = �∗. The above so-called � convention plots for the activity coefficients
is given in Fig. 16 where γA, γA2 < 1, which contradicts the results of the free energy
estimates given in Figs. 10–12, especially Fig. 10; this was to be expected from the
assumptions made for state A∗. Since δA2,out can be determined from the more reliable
(B) process, we might be able to derive an estimate for γ ∗

Aγ ∗
A for the (A . . . A) T S

state of two atoms about to dimerize where the (B) process assignment is used for
the determination. We would expect γ ∗

Aγ ∗
A to change relatively much more slowly

compared to the γA and γA2 variations over the system ρ if the activity coefficient is
strongly influenced by the isolated large repulsive potential of the two atoms at the
T S region. Evidence in this direction would serve as a prototype for describing ionic
reactions along the classical ideas of Brönsted and Bjerrum.

3.6.2 Single-stage considerations

There is no reference state at the T S to compute energy differences. For instance, for
the backward reaction

γ ′
A2

= γA2

γ ∗
A

γ ∗
A ≈ � (120)

if γ ∗
A ≈ γA as before for (B) (2 stage process). Then from � = �′ we get γ ′

A ≈ 1
which is contrary to the simulation results. Similarly, for the (F) reaction, we have
γ ′
Aγ ′

A = γAγA

γ ∗
A2

and with the assignment γ ∗
A2

≈ γA2 , we get γ ′
A = 1√

�
and from (103)

there results γ ′
A2

≈ γA2
γA2

= 1 which is also not observed. Hence the absolute single-

stage process are not expected although they seem to conform to the Brönsted-Bjerrum
(B-B) form (where the z’s are the associated charges)

Aza + Bzb → (AB)za+zb → Products

with k = k0� where � = γAza γBzb

γ
†

AB(za+zb)

with † referring to the upper level in the energy

diagrams of Figs. 13, 14 or transition state of conventional theory. These observations
suggest that the B-B form could well be described as an approximation of another
mechanism which does not have pre-equilibria transition states; an example being the
two stage process below which subsumes the B-B equations.
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Ionic Reactions: The classical kinetic theory of salt effects applied to recent investi-
gations by Sanchez et al. [47,48] gives the B-B equation for the rate constant k as

k = k0
γAγB . . .

γ†
(121)

where k0 is the reference rate constant for the solvent, γA, γB . . . are the reactant
activity coefficients of reactants A,B, . . . and γ† is that of the transition state where
if the charge of the reactants are za, zb, . . . then the charge of the T S denoted by
† is z† = za + zb + . . .. The activity coefficient γJ (Debye-Huckel limiting law
approximation) for any species J conforms to

log γJ = −Az2
J I 1/2 = −Qz2

J (122)

where Q = AI 1/2 is a positive number, leading from (121) to the rate form

log k2 = log k0
2 + 2AzAzBI 1/2 (123)

where a negative salt effect is expected for anion/cation bimolecular reactions, such
as the recently studied reaction (with pz=pyrazine)

[Fe(CN)6]3−︸ ︷︷ ︸
A

+[Ru(NH3)5pz]2+︸ ︷︷ ︸
B

kr�
kf [Fe(CN)6]4−︸ ︷︷ ︸

C

+[Ru(NH3)5pz]3+︸ ︷︷ ︸
D

(124)

where the forward reaction with rate constant kf shows a contradictory positive
salt effect; other violations have been reported [48, see Ref. 4 of this citation]. The
interpretation of these anomalies has been made using the theory of Marcus and Hush
[48]. These workers introduced composite reactions, leading to a pseudo-elementary
process such as

A + B

k1�
k−1 PC

PC � X† � SC

SC → C + D (125)

for the overall reaction A+B → C+D. Violations of the B-B formula (121) have been
attributed to differences in activity coefficient properties of the precursor complex PC

and activated state X†; SC is a postulated “successor complex,” where the Markus-
Hush ideas are also incorporated [48, p. 15089]. It would be of interest therefore to
frame theories and proposals for elementary reactions that might also explain some of
the above results; this is attempted below.

123



1018 J Math Chem (2008) 43:976–1023

3.6.3 (i) Proposal of mechanism to explain positive deviation for forward reaction of
Eq. 124

Rewriting (124) with reactants C and D, products A and B with the charges, we have
an elementary reaction

C4− + D3+ kf→ A3− + B2+ (126)

The postulated reaction sequence route of an ideal model is

C4− . . . D3+ → T .S.l state →
{
A3− + B2+}u state

separated products P (127)

In (127), C . . . D represents a pre-associated complex which retains the spectroscopic
details (e.g. in UV-IR range used for measuring concentrations) but which are close
enough to ideally form an effective single charge of magnitude −1. The T .S. is the
lower (l) degenerate state relative to the vacuum, and P the upper level u. In the
presence of the solution dielectric, the first order perturbation according to the two
stage model give a total pre-exponential total γtot as

γtot = γC...D

/(
γAγB(u state)

γT .S.(l state)

)
(128)

for the overall rate k2 = k0
2γtot . Taking (122) logarithms to base 10, results in

log γtot = log γC...D + log γT .S. − log γA − log γB (129)

= −1Q − 1Q + 9Q + 4Q

≈ +11Q (130)

and so

log k2 = log k0
2 + 11Q (131)

which leads a positive deviation in contradiction to the standard B-B equation for
cation/anion reactants. The above model had no intermediate forms; all charges were
discrete etc. As a further refinement, one can write down intermediate forms of asso-
ciation with charge parameter −λ and the l. state with charge −τ leading to

log k2 = log k0
2 + Q(13 − λ2 − τ 2) (132)

It might be possible to write down intermediate forms of association along the lines
of the above where the positive deviation is not a discrete multiple of Q above.
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3.6.4 (ii) Other mechanisms not in B-B form

Large charged molecular fragments Aza and Bzb might not be large enough to be
considered separate and discrete even at the TS region so that for the overall elementary
reaction

Aza + Bzb → Products (133)

with pathway A+B → T .S. → P , the two stage proposal yields the pre-exponential
term γtot to k2 where

γtot = γAγB

/(
γP

γ T .S.

)
(134)

If there is no further fragmentation, the charge on P would equal that of the T .S

located at two centers, leading to γtot = γAγB with

k2 = k0
2γAγB. (135)

On the other hand, A and B if distinct would have the T .S. activity coefficient γT .S. ≈
γA · γB and if P fragments, then the γtot multiplicative factor becomes

γtot = (γAγB)2 /γP (136)

where the γP is a product of the activity coefficients of the fragmented portions of the
product states.

3.6.5 (iii) General harmonization of the B-B formulation with the present theory for
free (non-associated) ions

The ionic reaction with free ions

Aza + Bzb → Products (P )

has the following reaction pathway for the two stage model

Aza + Bzb → Aza . . . Bzb (T .S.(a))
�E=0,vacuum→ (A + B)za+zb (T .S.(b)) → P.

(137)

�Eact is defined to be the activation energy parameter from the free ionic state to
the transition state a under vacuum conditions where there is bond formation and
the smallest distance δrA,B between two charge centers that are considered separate,
and T.S. b is the smallest distance when they are not considered separate and when a
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singularity of the external potential is applied as in the two stage model. Then the first
order energy perturbation at the TS (between (a) and (b)) �E is

�E = kT ln

(
γ(A+B)za+zb

(γAza . . . γBzb )

)
(138)

and so the rate constant k2 becomes outside of the vacuum state

k2 = k0
2

γAγB

γ(A+B)za+zb

· (γAza . . . γBzb ) (139)

where (γAza . . . γBzb ) is the T S species which has distinct charges relative to the
dielectric medium and would appear as a product term of activity coefficients at the
T S state, i.e. (γAza . . . γBzb ) = γ

∗(T .S)
A · γ ∗(T .S)

B . The energy of interaction of the Aza

and Bzb would constitute a major portion of the activity coefficient of the pair, and
would be expected to be relatively constant over a large range of system ρ compared
to the bulk activity coefficients of the other species and reactants. Thus, under these
conditions, we have

k2 ≈ k0′
2

γAγB

γ(A+B)za+zb

(140)

with k0′
2 = k0

2(γAza . . . γBzb ), which is the B-B equation for ionic reactions. Clearly,
some demonstration of the relative constancy of γAza . . . γBzb would be re-assuring.
Obviously the potentials for the present dimer model and that of ionic reactions are
different, but we can show a relative constancy for the analogous T S atomic pair, and
so can expect a similar relative constancy to obtain for ionic reactions. We return to the
previous system of Eq. 115 where γAza . . . γBzb is equivalent to γ ∗

Aγ ∗
A = (γ ∗

A . . . γ ∗
A)

for A = B. Then

γ ′
Aγ ′

A = γ 2
A(γ ∗

A . . . γ ∗
A)

γ ∗
A2

(141)

A plot of this function is given in Fig. 17. The analog of γ ∗
A2

is γ(A+B)za+zb . In (140),

for A = B, γAγB ≡ γ 2
A would vary very dramatically, as is obvious from Fig. 15.

From ρ = 0 to ρ = 1,
γ 2
A

γA2
varies by about 16, whereas (γ ∗

A . . . γ ∗
A) varies by 0.2.

Thus, it is conceivable that the B-B expression may be derivable from a strictly ele-
mentary reaction, based on the above estimates. Figure 18 illustrates two plots, where
the “Activity” variable corresponds to using (141) to calculate γ ∗

A with the assumption

γ ∗
A2

= γA2 and the “Ratio” variable is simply the reactivity and activity ratio
γ ′
A

γA
using

the inverse � convention to determine γA.
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Fig. 17 Excited state activity for dimer before bonding for forward rate showing relatively lower change
compared to the bulk activity coefficients (which would be the square of the values given in Fig. 15)
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Fig. 18 Availability coefficient ratios to illustrate the expected constancy of the availability coefficients of
the excited species

4 Conclusion

The current form of the elementary reaction rate constant is still incomplete despite
the depth and complexity of analysis valid for relatively low density systems due to
the utilization of traditional definitions and conventions. A more complete description
would involve the “reactivity” coefficients and these coefficients are intimately related
to the activity coefficients of the species involved in the reaction. Under stipulated
conditions, such as obtain for the two stage model, explicit first order expressions may
be derived connecting the reactivity and activity coefficients. A whole range of product
and reactant states exists, and under an enumeration scheme incorporating the Gibbs
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equilibrium condition, one particular state may be determined from another through a
series of equations which also feature the bulk activity coefficients. The theory of ionic
reactions as developed by Brönsted and Bjerrum may be subsumed by the simple first
order models provided here using a strictly elementary reactive process; in particular
these models can also explain apparent violations of the standard Brönsted-Bjerrum
theory involving composite reactions. The framework given here can be extended to
other more complex particle reactions which are moderated by strong external fields,
such as what might obtain in the plasma state.
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